链接:
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 875 Accepted Submission(s): 386
Problem Description
A sequence b1,b2,⋯,bn are called (d1,d2)-arithmetic sequence if and only if there exist i(1≤i≤n) such that for every j(1≤j<i),bj+1=bj+d1 and for every j(i≤j<n),bj+1=bj+d2.Teacher Mai has a sequence a1,a2,⋯,an. He wants to know how many intervals [l,r](1≤l≤r≤n) there are that al,al+1,⋯,ar are (d1,d2)-arithmetic sequence.
Input
There are multiple test cases. For each test case, the first line contains three numbers n,d1,d2(1≤n≤105,|d1|,|d2|≤1000), the next line contains n integers a1,a2,⋯,an(|ai|≤109).
Output
For each test case, print the answer.
Sample Input
5 2 -2 0 2 0 -2 0 5 2 3 2 3 3 3 3
Sample Output
12 5
代码:
#include#include #include #include #define N 100005#define LL long longint a[N], dp[N];int main(){ int n, d1, d2; while(scanf("%d%d%d", &n, &d1, &d2)!=EOF) { int i; for(i=1; i<=n; i++) scanf("%d", &a[i]); memset(dp, 0, sizeof(dp)); for(i=1; i
#include#include #include #define N 110000int a[N];int main(){ int n, i, x, y, d1, d2; while(scanf("%d%d%d", &n, &d1, &d2)!=EOF) { __int64 s1, s2, sum; s1 = s2 = sum = 0; memset(a, 0, sizeof(a)); scanf("%d", &x); for(i=1; i